Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.222
Filtrar
1.
Vet Microbiol ; 292: 110036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458048

RESUMO

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Assuntos
Infecções por Rotavirus , Doenças dos Suínos , Animais , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Membrana Celular , Degradação Associada com o Retículo Endoplasmático , Antígenos de Histocompatibilidade Classe I/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Infecções por Rotavirus/veterinária , Suínos , Doenças dos Suínos/metabolismo
2.
Stem Cells Transl Med ; 13(1): 69-82, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37843402

RESUMO

Immune evasive induced pluripotent stem cell (iPSC)-derived kidney organoids, known as "stealth" organoids, hold promise for clinical transplantation. To address immune rejection, we investigated the impact of genetically modifying human leukocyte antigen (HLA) class I in kidney organoids prior to transplantation. By using CRISPR-Cas9, we successfully knocked out beta-2-microglobulin (B2M), resulting in iPSCs devoid of HLA class I surface expression. In vitro, the B2M knockout protected kidney organoids derived from these iPSCs against T-cell rejection. To assess in vivo protection, unmodified (control) and B2M-/- kidney organoids were transplanted into humanized mice engrafted with human peripheral blood mononuclear cells (PBMCs). Successful engraftment of human PBMCs was confirmed, and after 4 weeks, we observed no discernible difference in the infiltration rate, proliferation, or cytotoxicity of CD4+ and CD8+ T cells between control and B2M-/- organoids. Both groups of organoids showed compromised tissue integrity, displaying tubulitis and loss of tubule integrity. Notably, while B2M-/- organoids failed to express HLA class I on their cell surface, there was preexisting expression of HLA class II in both control and B2M-/- organoids transplanted into mice with human PBMCs. HLA class II expression was not limited to antigen-presenting cells but also evident in epithelial cells of the kidney organoid, posing an additional immunological challenge to its transplantation. Consequently, we conclude that B2M knockout alone is insufficient to protect iPSC-derived kidney organoids from T-cell-mediated immune rejection. Additionally, our findings suggest that modulating HLA class II signaling will be necessary to prevent rejection following transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Antígenos HLA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim , Leucócitos Mononucleares , Camundongos Knockout , Organoides , Microglobulina beta-2/metabolismo
3.
J Mol Biol ; 435(22): 168285, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741548

RESUMO

Amyloid formation due to protein misfolding has gained significant attention due to its association with neurodegenerative diseases. α-Synuclein (α-syn) is one such protein that undergoes a profound conformational switch to form higher order cross-ß-sheet structures, resulting in amyloid formation, which is linked to the pathophysiology of Parkinson's disease (PD). The present status of research on α-syn aggregation and PD reveals that the disease progression may be linked with many other diseases, such as kidney-related disorders. Unraveling the link between PD and non-neurological diseases may help in early detection and a better understanding of PD progression. Herein, we investigated the modulation of α-syn in the presence of ß2-microglobulin (ß2m), a structural protein associated with dialysis-related amyloidosis. We took a multi-disciplinary approach to establish that ß2m mitigates amyloid formation by α-syn. Our fluorescence, microscopy and toxicity data demonstrated that sub-stoichiometric ratio of ß2m drives α-syn into off-pathway non-toxic aggregates incompetent of transforming into amyloids. Using AlphaFold2 and all-atom MD simulation, we showed that the ß-strand segments (ß1 and ß2) of α-synuclein, which frequently engage in interactions within amyloid fibrils, interact with the last ß-strand at the C-terminal of ß2m. The outcome of this study will unravel the yet unknown potential linkage of PD with kidney-related disorders. Insights from the cross-talk between two amyloidogenic proteins will lead to early diagnosis and new therapeutic approaches for treating Parkinson's disease. Finally, disruption of the nucleation process of α-syn amyloids by targeting the ß1-ß2 region will constitute a potential therapeutic approach for inhibiting amyloid formation.


Assuntos
Amiloide , Doença de Parkinson , Agregados Proteicos , alfa-Sinucleína , Microglobulina beta-2 , Humanos , alfa-Sinucleína/química , Amiloide/química , Proteínas Amiloidogênicas , Doença de Parkinson/metabolismo , Diálise Renal/efeitos adversos , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Simulação de Acoplamento Molecular , Modelos Moleculares , Conformação Proteica
4.
Biomolecules ; 13(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509158

RESUMO

Beta-2 microglobulin (B2M) is an immune system protein that is found on the surface of all nucleated human cells. B2M is naturally shed from cell surfaces into the plasma, followed by renal excretion. In patients with impaired renal function, B2M will accumulate in organs and tissues leading to significantly reduced life expectancy and quality of life. While current hemodialysis methods have been successful in managing electrolyte as well as small and large molecule disturbances arising in chronic renal failure, they have shown only modest success in managing plasma levels of B2M and similar sized proteins, while sparing important proteins such as albumin. We describe a systematic protein design effort aimed at adding the ability to selectively remove specific, undesired waste proteins such as B2M from the plasma of chronic renal failure patients. A novel nanoparticle built using a tetrahedral protein assembly as a scaffold that presents 12 copies of a B2M-binding nanobody is described. The designed nanoparticle binds specifically to B2M through protein-protein interactions with nanomolar binding affinity (~4.2 nM). Notably, binding to the nanoparticle increases the effective size of B2M by over 50-fold, offering a potential selective avenue for separation based on size. We present data to support the potential utility of such a nanoparticle for removing B2M from plasma by either size-based filtration or by polyvalent binding to a stationary matrix under blood flow conditions. Such applications could address current shortcomings in the management of problematic mid-sized proteins in chronic renal failure patients.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Falência Renal Crônica/tratamento farmacológico , Falência Renal Crônica/terapia , Qualidade de Vida , Diálise Renal , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/terapia , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacologia , Nanopartículas/uso terapêutico
5.
Sci Rep ; 13(1): 5159, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991096

RESUMO

Novel therapeutic drugs have dramatically improved the overall survival of patients with multiple myeloma. We sought to identify the characteristics of patients likely to exhibit a durable response to one such drug, elotuzumab, by analyzing a real-world database in Japan. We analyzed 179 patients who underwent 201 elotuzumab treatments. The median time to next treatment (TTNT) with the 95% confidence interval was 6.29 months (5.18-9.20) in this cohort. Univariate analysis showed that patients with any of the following had longer TTNT: no high risk cytogenic abnormalities, more white blood cells, more lymphocytes, non-deviated κ/λ ratio, lower ß2 microglobulin levels (B2MG), fewer prior drug regimens, no prior daratumumab use and better response after elotuzumab treatment. A multivariate analysis showed that TTNT was longer in patients with more lymphocytes (≥ 1400/µL), non-deviated κ/λ ratio (0.1-10), lower B2MG (< 5.5 mg/L) and no prior daratumumab use. We proposed a simple scoring system to predict the durability of the elotuzumab treatment effect by classifying the patients into three categories based on their lymphocyte counts (0 points for ≥ 1400/µL and 1 point for < 1400/µL) and κ/λ ratio (0 points for 0.1-10 and 1 point for < 0.1 or ≥ 10) or B2MG (0 points for < 5.5 mg/L and 1 point for ≥ 5.5 mg/L). The patients with a score of 0 showed significantly longer TTNT (p < 0.001) and better survival (p < 0.001) compared to those with a score of 1 or 2. Prospective cohort studies of elotuzumab treatment may be needed to validate the usefulness of our new scoring system.


Assuntos
Mieloma Múltiplo , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Contagem de Linfócitos , Estudos Prospectivos , Microglobulina beta-2/metabolismo
6.
Nat Commun ; 14(1): 1190, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864041

RESUMO

ß2-microglobulin (ß2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of ß2m result in diseases with distinct pathologies. ß2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst ß2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aß.


Assuntos
Amiloidose , Insuficiência Renal , Humanos , Amiloide/genética , Proteínas Amiloidogênicas/genética , Amiloidose/genética , Diálise Renal , Microglobulina beta-2/metabolismo
7.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868208

RESUMO

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Assuntos
Síndrome de Down , Receptores de N-Metil-D-Aspartato , Microglobulina beta-2 , Animais , Humanos , Camundongos , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacologia , Disfunção Cognitiva/metabolismo , Reações Cruzadas , Parabiose , Proteômica , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Síndrome de Down/sangue , Síndrome de Down/metabolismo
8.
Otol Neurotol ; 43(9): e1049-e1055, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36006779

RESUMO

BACKGROUND AND OBJECTIVES: Vestibular schwannoma (VS), the most common intercranial schwannoma, originates from the sheath of the vestibular nerve. The growth rate of VS varies greatly, with the tumor enlarging gradually, which can compress the peripheral nerve tissue and reveal corresponding symptoms. This study was aimed to elucidate the growth mechanism of VS by analyzing cellular changes at protein, messenger ribonucleic acid (mRNA), and other molecular levels. METHODS: We determined mRNA and protein levels of ß 2 -microglobulin (ß 2 -M) and nuclear factor κB (NF-κB) in tumors of different sizes using the real-time polymerase chain reaction and Western blotting, respectively. The relationship between these factors was verified in VS primary cells cultured in vitro, and the potential role of ß 2 -M and NF-κB in VS growth was elucidated. RESULTS: In the secretions of freshly isolated tumor tissue cultured for 72 h, the concentration of ß 2 -M was positively correlated with the tumor diameter. Furthermore, tumors with larger diameter showed higher expressions of ß 2 -M and NF-κB at protein and mRNA level. ß 2 -M treatment resulted in elevated protein expression of NF-κB and also its phosphorylated form in vitro. CONCLUSION: ß 2 -M may participate in VS growth by regulating NF-κB and act as a key regulatory molecule in VS tumor growth.


Assuntos
NF-kappa B , Neuroma Acústico , Microglobulina beta-2 , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Neuroma Acústico/genética , RNA Mensageiro/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
9.
ACS Biomater Sci Eng ; 8(8): 3142-3161, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35848712

RESUMO

Because ß-2-microglobulin (ß2M) is a surface protein that is present on most nucleated cells, it plays a key role in the human immune system and the kidney glomeruli to regulate homeostasis. The primary clinical significance of ß2M is in dialysis-related amyloidosis, a complication of end-stage renal disease caused by a gradual accumulation of ß2M in the blood. Therefore, the function of ß2M in kidney-related diseases has been extensively studied to evaluate its glomerular and tubular functions. Because increased ß2M shedding due to rapid cell turnover may indicate other underlying medical conditions, the possibility to use ß2M as a versatile biomarker rose in prominence across multiple disciplines for various applications. Therefore, this work has reviewed the recent use of ß2M to detect various diseases and its progress as a biomarker. While the use of state-of-the-art ß2M detection requires sophisticated tools, high maintenance, and labor cost, this work also has reported the use of biosensor to quantify ß2M over the past decade. It is hoped that a portable and highly efficient ß2M biosensor device will soon be incorporated in point-of-care testing to provide safe, rapid, and reliable test results.


Assuntos
Amiloidose , Técnicas Biossensoriais , Amiloidose/etiologia , Amiloidose/metabolismo , Biomarcadores , Humanos , Diálise Renal , Microglobulina beta-2/metabolismo
10.
Cancer Res ; 82(18): 3321-3334, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841593

RESUMO

Glioblastoma (GBM) is a complex ecosystem that includes a heterogeneous tumor population and the tumor-immune microenvironment (TIME), prominently containing tumor-associated macrophages (TAM) and microglia. Here, we demonstrated that ß2-microglobulin (B2M), a subunit of the class I major histocompatibility complex (MHC-I), promotes the maintenance of stem-like neoplastic populations and reprograms the TIME to an anti-inflammatory, tumor-promoting state. B2M activated PI3K/AKT/mTOR signaling by interacting with PIP5K1A in GBM stem cells (GSC) and promoting MYC-induced secretion of transforming growth factor-ß1 (TGFß1). Inhibition of B2M attenuated GSC survival, self-renewal, and tumor growth. B2M-induced TGFß1 secretion activated paracrine SMAD and PI3K/AKT signaling in TAMs and promoted an M2-like macrophage phenotype. These findings reveal tumor-promoting functions of B2M and suggest that targeting B2M or its downstream axis may provide an effective approach for treating GBM. SIGNIFICANCE: ß2-microglobulin signaling in glioblastoma cells activates a PI3K/AKT/MYC/TGFß1 axis that maintains stem cells and induces M2-like macrophage polarization, highlighting potential therapeutic strategies for targeting tumor cells and the immunosuppressive microenvironment in glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Microglobulina beta-2/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ecossistema , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Células-Tronco/patologia , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta1 , Macrófagos Associados a Tumor
11.
Amyloid ; 29(4): 255-262, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575118

RESUMO

BACKGROUND: ß2-microglobulin amyloidosis was first described in the 1980s as a protein deposition disease associated with long-term haemodialysis. More recently, two inherited forms resulting from separate point mutations in the ß2-microglobulin gene have been identified. In this report, we detail a novel ß2M variant, P32L, caused by a unique dinucleotide mutation that is linked to systemic hereditary ß2-microglobulin amyloidosis. METHODS: Three family members from a Portuguese kinship featured cardiomyopathy, requiring organ transplantation in one case, along with soft tissue involvement; other involvements included gastrointestinal, neuropathic and sicca syndrome. In vitro studies with recombinant P32L, P32G, D76N and wild-type ß2-microglobulin were undertaken to compare the biophysical properties of the proteins. RESULTS: The P32L variant was caused by the unique heterozygous dinucleotide mutation c.154_155delinsTT. Amyloid disease featured lowered serum ß2-microglobulin levels with near equal amounts of circulating P32L and wild-type proteins; amyloid deposits were composed exclusively of P32L variant protein. In vitro studies of P32L demonstrated thermodynamic and chemical instability and enhanced susceptibility to proteolysis with rapid formation of pre-fibrillar oligomeric structures by N- and C-terminally truncated species under physiological conditions. CONCLUSIONS: This work provides both clinical and experimental evidence supporting the critical role of P32 residue replacement in ß2M amyloid fibrillogenesis.


Assuntos
Amiloidose Familiar , Amiloidose , Humanos , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose Familiar/genética , Microglobulina beta-2/metabolismo , Prolina/genética
12.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35393611

RESUMO

At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (ß2m, encoded by B2M), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single-molecule co-tracking. We identify non-covalent MHC-I FHC dimers, with dimerization mediated by the α3 domain, as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single-molecule colocalization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to that seen for ß2m.


Assuntos
Antígenos de Histocompatibilidade Classe I , Microglobulina beta-2 , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Microglobulina beta-2/metabolismo
13.
Nephrology (Carlton) ; 27(6): 494-500, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35195932

RESUMO

AIM: To compare small, middle and large-middle molecule clearance; and expression of markers of inflammation, between Solacea-190H (asymmetric cellulose triacetate [ATA]) and FX-80 dialysers in long-hour haemodialysis patients. METHODS: This pilot, randomized cross-over trial recruited 10 home haemodialysis patients. The total study duration was 8 weeks, using each dialyser for 4 weeks. Removal of small (urea, phosphate, creatinine and indoxyl sulfate [IS]), middle and large-middle molecules (beta-2 microglobulin [ß2M], albumin), markers of inflammation (interleukin-6 [IL-6], malondialdehyde-modified low density lipoprotein [MDA-LDL] and alpha-1 microglobulin [α1M]), was evaluated in serum and dialysate samples. RESULTS: Reduction ratios [RR] were calculated for variables at the fourth week of each dialyzer sequence and results expressed as difference in mean RR between dialyzers. There was no difference in clearance of small molecules, with difference in mean RR for urea -2.43 (95% CI -6.44, 1.57; p = .19), creatinine -1.82 (95% CI -5.50, 1.85; p = .28) and phosphate -2.61 (95% CI -12.45, 7.23; p = .55); clearance of middle and large-middle molecules with difference in mean RR (range) for ß2M 2.2 (95% CI -3.2, 7.7; p = .35), IS 1.8 (95% CI -9.5, 13; p = .72) and albumin -0.6 (95% CI -5.5, 4.2; p = .77). There was lack of induction of markers of inflammation, including IL-6 15.2 (95% CI -31.9, 62.2; p = .47), MDA-LDL -8.1 (95% CI -22.1, 5.8; p = .21) and α1M -3.50 (95% CI -29.2, 22.2; p = .76). Dialysate removal results were concurrent. CONCLUSION: This study showed no difference in clearance of small, middle and large-middle molecules, nor expression of markers of inflammation between dialysers.


Assuntos
Interleucina-6 , Membranas Artificiais , Albuminas/metabolismo , Celulose/análogos & derivados , Creatinina , Soluções para Diálise , Fluorocarbonos , Furanos , Humanos , Inflamação , Fosfatos , Projetos Piloto , Polímeros , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Sulfonas , Ureia , Microglobulina beta-2/metabolismo
14.
Sci Rep ; 12(1): 62, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996950

RESUMO

The neonatal Fc receptor (FcRn) is known to mediate placental transfer of IgG from mother to unborn. IgE is widely known for triggering immune responses to environmental antigens. Recent evidence suggests FcRn-mediated transplacental passage of IgE during pregnancy. However, direct interaction of FcRn and IgE was not investigated. Here, we compared binding of human IgE and IgG variants to recombinant soluble human FcRn with ß2-microglobulin (sFcRn) in surface plasmon resonance (SPR) at pH 7.4 and pH 6.0. No interaction was found between human IgE and human sFcRn. These results imply that FcRn can only transport IgE indirectly, and thereby possibly transfer allergenic sensitivity from mother to fetus.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina E/metabolismo , Placenta/metabolismo , Receptores Fc/metabolismo , Transporte Biológico , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/metabolismo , Troca Materno-Fetal , Gravidez , Ligação Proteica , Ressonância de Plasmônio de Superfície , Microglobulina beta-2/metabolismo
15.
Gastroenterology ; 162(3): 799-812, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687740

RESUMO

BACKGROUND & AIMS: A detailed understanding of antitumor immunity is essential for optimal cancer immune therapy. Although defective mutations in the B2M and HLA-ABC genes, which encode molecules essential for antigen presentation, have been reported in several studies, the effects of these defects on tumor immunity have not been quantitatively evaluated. METHODS: Mutations in HLA-ABC genes were analyzed in 114 microsatellite instability-high colorectal cancers using a long-read sequencer. The data were further analyzed in combination with whole-exome sequencing, transcriptome sequencing, DNA methylation array, and immunohistochemistry data. RESULTS: We detected 101 truncating mutations in 57 tumors (50%) and loss of 61 alleles in 21 tumors (18%). Based on the integrated analysis that enabled the immunologic subclassification of microsatellite instability-high colorectal cancers, we identified a subtype of tumors in which lymphocyte infiltration was reduced, partly due to reduced expression of HLA-ABC genes in the absence of apparent genetic alterations. Survival time of patients with such tumors was shorter than in patients with other tumor types. Paradoxically, tumor mutation burden was highest in the subtype, suggesting that the immunogenic effect of accumulating mutations was counterbalanced by mutations that weakened immunoreactivity. Various genetic and epigenetic alterations, including frameshift mutations in RFX5 and promoter methylation of PSMB8 and HLA-A, converged on reduced expression of HLA-ABC genes. CONCLUSIONS: Our detailed immunogenomic analysis provides information that will facilitate the improvement and development of cancer immunotherapy.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Genes MHC Classe I/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microglobulina beta-2/genética , Alelos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Epigênese Genética , Expressão Gênica , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Humanos , Imunogenética , Linfócitos do Interstício Tumoral , Instabilidade de Microssatélites , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Transcrição de Fator Regulador X/genética , Taxa de Sobrevida , Microglobulina beta-2/metabolismo
16.
Sci Rep ; 11(1): 23613, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880353

RESUMO

Pyrin/TRIM20 is expressed in the neutrophils and monocytes/macrophages and regulates caspase-1 activation and interleukin-1ß maturation. Although the mutations in the PRY/SPRY domain of pyrin cause familial Mediterranean fever (FMF), the mechanism of how mutated pyrin provokes excessive inflammation in FMF patients is not well understood. The present study investigated the role of pyrin/TRIM20 in inflammation and the pathogenesis of FMF. ß2-Microglobulin (ß2MG) was identified as the novel pyrin ligand binding to the PRY/SPRY domain by yeast two-hybrid screenings and co-immunoprecipitation analysis. ß2MG was co-localized with pyrin not only in the HEK293 cells overexpressing these proteins but also in the monosodium urate-stimulated human neutrophils in the speck-like structures. The pyrin-ß2MG interaction triggered the binding of pyrin and proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) and then the subsequent recruitment of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC). Caspase-1 p20 subunit, produced by pyrin inflammasome, also interacted with the pyrin PRY/SPRY domain and inhibited the pyrin-ß2MG interaction. FMF-associated pyrin mutation M694V did not affect pyrin-ß2MG interaction but weakened this inhibition. Our findings suggest that ß2MG functions as the pyrin ligand inducing pyrin inflammasome formation and that the FMF-associated pyrin mutations weakened negative feedback of caspase-1 p20 subunit.


Assuntos
Inflamassomos/metabolismo , Pirina/metabolismo , Microglobulina beta-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Febre Familiar do Mediterrâneo/metabolismo , Células HEK293 , Humanos , Mutação , Ligação Proteica , Domínios Proteicos
17.
J Mol Med (Berl) ; 99(12): 1815-1827, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34633469

RESUMO

Cognitive impairment is a serious side effect of post-myocardial infarction (MI) course. We have recently demonstrated that human adipose-derived stem cells (hADSCs) ameliorated myocardial injury after MI by attenuating reactive oxygen species (ROS) levels. Here, we studied whether the beneficial effects of intramyocardial hADSC transplantation can extend to the brain and how they may attenuate cognitive dysfunction via modulating ROS after MI. After coronary ligation, male Wistar rats were randomized via an intramyocardial route to receive either vehicle, hADSC transplantation (1 × 106 cells), or the combination of hADSCs and 3-Morpholinosydnonimine (SIN-1, a peroxynitrite donor). Whether hADSCs migrated into the hippocampus was assessed by using human-specific primers in qPCR reactions. Passive avoidance test was used to assess cognitive performance. Postinfarction was associated with increased oxidative stress in the myocardium, circulation, and hippocampus. This was coupled with decreased numbers of dendritic spines as well as a significant downregulation of synaptic plasticity consisting of synaptophysin and PSD95. Step-through latency during passive avoidance test was impaired in vehicle-treated rats after MI. Intramyocardial hADSC injection exerted therapeutic benefits in improving cardiac function and cognitive impairment. None of hADSCs was detected in rat's hippocampus at the 3rd day after intramyocardial injection. The beneficial effects of hADSCs on MI-induced histological and cognitive changes were abolished after adding SIN-1. MI-induced ROS attacked the hippocampus to induce neurodegeneration, resulting in cognitive deficit. The remotely intramyocardial administration of hADSCs has the capacity of improved synaptic neuroplasticity in the hippocampus mediated by ROS, not the cell engraftment, after MI. KEY MESSAGES: Human adipose-derived stem cells (hADSCs) ameliorated injury after myocardial infarction by attenuating reactive oxygen species (ROS) levels. Intramyocardial administration of hADSCs remotely exerted therapeutic benefits in improving cognitive impairment after myocardial infarction. The improved synaptic neuroplasticity in the hippocampus was mediated by hADSC-inhibiting ROS, not by the stem cell engraftment.


Assuntos
Tecido Adiposo/citologia , Disfunção Cognitiva/terapia , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Humanos , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Estresse Oxidativo , Ratos Wistar , Células-Tronco , Superóxidos/sangue , Superóxidos/metabolismo , Microglobulina beta-2/metabolismo
18.
Sci Rep ; 11(1): 20358, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645909

RESUMO

A wide range of diseases have been shown to be influenced by the accumulation of senescent cells, from fibrosis to diabetes, cancer, Alzheimer's and other age-related pathologies. Consistent with this, clearance of senescent cells can prolong healthspan and lifespan in in vivo models. This provided a rationale for developing a new class of drugs, called senolytics, designed to selectively eliminate senescent cells in human tissues. The senolytics tested so far lack specificity and have significant off-target effects, suggesting that a targeted approach could be more clinically relevant. Here, we propose to use an extracellular epitope of B2M, a recently identified membrane marker of senescence, as a target for the specific delivery of toxic drugs into senescent cells. We show that an antibody-drug conjugate (ADC) against B2M clears senescent cells by releasing duocarmycin into them, while an isotype control ADC was not toxic for these cells. This effect was dependent on p53 expression and therefore more evident in stress-induced senescence. Non-senescent cells were not affected by either antibody, confirming the specificity of the treatment. Our results provide a proof-of-principle assessment of a novel approach for the specific elimination of senescent cells using a second generation targeted senolytic against proteins of their surfaceome, which could have clinical applications in pathological ageing and associated diseases.


Assuntos
Senescência Celular/efeitos dos fármacos , Duocarmicinas , Imunoconjugados , Senoterapia , Microglobulina beta-2/metabolismo , Linhagem Celular , Duocarmicinas/farmacocinética , Duocarmicinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Senoterapia/farmacocinética , Senoterapia/farmacologia , Proteína Supressora de Tumor p53/biossíntese
19.
Proteomics Clin Appl ; 15(6): e2100022, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510746

RESUMO

PURPOSE: Refractoriness can occur after repeated platelet (PLT) transfusions because of alloimmunization to HLA class I antigens on transfused PLTs and generation of anti-HLA antibodies that bind to the foreign PLTs and initiate their destruction. Such refractoriness can be overcome by provision of HLA-matched PLTs from HLA typed donors. However, since the procedure is both expensive and time-consuming, an alternative approach is to deplete PLTs of HLA class I molecules by a brief treatment with citric acid, on ice. This is shown to be feasible without damaging PLT function. We used label free quantitative mass spectrometry (MS)-based proteomics to investigate the effect of acid treatment on apheresis PLTs for combatting immunologic PLT refractoriness. EXPERIMENTAL DESIGN: Proteomic analyses are undertaken using PLTs from seven apheresis concentrates, which were split in two with or without acid treatment. RESULTS: In total 1717 proteins in apheresis PLTs were quantified using proteomics. Data are available via ProteomeXchange with identifier PXD027893 . Of these, the amount of 80 proteins changed significantly after acid treatment, but overall there were not any major differences in proteomes between samples with and without acid treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In general, the changes of PLT proteins after treatment with citric acid were quite small and functionally safe. Hence, this result taken together with our previously published data indicates that acid treated PLTs can be used for treatment of patients with PLT refractoriness and opens up for a clinical trial.


Assuntos
Plaquetas/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Transfusão de Plaquetas , Proteoma/análise , Proteômica/métodos , Remoção de Componentes Sanguíneos , Plaquetas/citologia , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Espectrometria de Massas , Trombocitopenia/terapia , Regulação para Cima , Microglobulina beta-2/metabolismo
20.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207949

RESUMO

BACKGROUND: Nanobodies, or VHHs, are derived from heavy chain-only antibodies (hcAbs) found in camelids. They overcome some of the inherent limitations of monoclonal antibodies (mAbs) and derivatives thereof, due to their smaller molecular size and higher stability, and thus present an alternative to mAbs for therapeutic use. Two nanobodies, Nb23 and Nb24, have been shown to similarly inhibit the self-aggregation of very amyloidogenic variants of ß2-microglobulin. Here, the structure of Nb23 was modeled with the Chemical-Shift (CS)-Rosetta server using chemical shift assignments from nuclear magnetic resonance (NMR) spectroscopy experiments, and used as prior knowledge in PONDEROSA restrained modeling based on experimentally assessed internuclear distances. Further validation was comparatively obtained with the results of molecular dynamics trajectories calculated from the resulting best energy-minimized Nb23 conformers. METHODS: 2D and 3D NMR spectroscopy experiments were carried out to determine the assignment of the backbone and side chain hydrogen, nitrogen and carbon resonances to extract chemical shifts and interproton separations for restrained modeling. RESULTS: The solution structure of isolated Nb23 nanobody was determined. CONCLUSIONS: The structural analysis indicated that isolated Nb23 has a dynamic CDR3 loop distributed over different orientations with respect to Nb24, which could determine differences in target antigen affinity or complex lability.


Assuntos
Anticorpos Monoclonais/química , Cadeias Pesadas de Imunoglobulinas/química , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Anticorpos de Domínio Único/química , Microglobulina beta-2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Elementos Estruturais de Proteínas , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Microglobulina beta-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...